Critical role for evolutionary biology in adaptation of nature

Author: J. J. Hellmann and M. E. Pfrender

Excerpted from the 25th anniversary issue of the journal, Conservation Biology, by J. J. Hellmann and M. E. Pfrender:

"In 1978, at the first conference to discuss the emerging field of conservation biology, there were 4 billion people on Earth. Now there are more than 7 billion, with 10.1 billion projected by 2100. Sustainably meeting the needs of 10 billion people and conserving natural resources at the same time will require profound creativity and innovation. Scholars who study human-caused climate change have a word for this creativity, adaptation. Adaptation involves some acceptance that change is occurring and will continue to occur and an acknowledgment that new forms and combinations of nature are being created. Adaptation also requires humans to design new tools, draw upon new theories and resources, and manage natural and social systems to a greater degree than we have before.

To allow successful adaptation of ecosystems to global change, conservation biology will have to shift its perspective from backward to forward looking. Restoring and maintaining ecosystems to a historic baseline has been a common goal of conservation, but alterations in land cover, climate change, and environmental contaminants are making it impossible to recreate the past. Instead, society has to ask what kind of nature it would like to create and what ecosystem functions it would like to maintain.

We think conservation biology should strive to preserve economic, cultural, aesthetic, and option value with little or no reduction in the biological diversity that underlies that value. To achieve this, however, society will need to maintain genetic diversity and functioning ecosystems alongside humans. And it will be necessary to foster biotic changes that are achievable given the realities of global change.

We argue that adaptation of nature by humans to global changes such as climate change, habitat loss and fragmentation, and nutrient deposition will require a sophisticated understanding of evolutionary theory and genome biology because evolution is a key, and inevitable, response of organisms to changes in their environment. Furthermore, evolutionary factors can be manipulated to foster particular conservation outcomes. In other words, acknowledging and harnessing evolutionary adaptation will be critical to enabling humans to facilitate adaptation of ecosystems to global change.

...We think the role of evolutionary principles in conservation biology will expand in the future so that the following objectives of ecosystem adaptation can be achieved.
1. Reveal the effects of global change on biological diversity.
2. Understand natural resilience to global change.
3. Craft interventions to minimize effects of global change.
4. Predict responses to intervention.

...Conservation professionals and the public need to define the key objectives of conservation and find ways to achieve those objectives. Toward the former, we suggest a goal of maximizing genetic diversity to encourage adaptive evolution and increased recognition that populations and communities are likely to change in profound ways. To the latter, we argue that evolutionary principles offer the greatest potential to understand the future trajectory of biological diversity and enhance the likelihood of desirable conservation outcomes."

Read the rest of the article here.