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Abstract: Recent studies have estimated that climate generated extreme weather disasters have 

reduced crop yields globally by up to 10%. By incorporating measures of adaptive capacity, we 

develop a model of the relationship between climate change induced extreme weather disasters 

and agricultural output between 1995 and 2010. To our minds this is the first systematic effort to 

account for agricultural outcomes by controlling for social capabilities to counteract the 

pressures from the climate. Using panel data models, we find that at the national level, the 

greater the adaptive capability of a country the more attenuated are the expected agricultural 

losses from climate events. In effect climate related agricultural consequences vary as a function 

of the heterogeneity across countries.  Much of this heterogeneity in adaptive capacity is a result 

of policy choices structural preparedness. We use our results to draw inferences about crop 

yields under different levels of adaptive capacity in the context of climate change.   
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1. Introduction  

The international community is committed to addressing climate change impacts through 

adaptation. For example, Article 4.1b of the United Nations Framework Convention on Climate 

Change (UNFCCC) states that parties are, “committed to formulate and implement national and, 

where appropriate, regional programs containing measures to facilitate adequate adaptation to 

climate change” (UNFCCC 1992) and the recent Paris, 2016 accord codified the importance of 

adaptation. There are numerous climate change adaptation studies that scale up our 

understanding of existing vulnerabilities, climate adaptation, and the role of adaptation action at 

global, national, and local levels (e.g., Dunlap and Brulle 2015). Evidence suggests that climate 

change may lead to armed conflict (Caruso et al. 2016; Hsiang et al. 2013; Miguel et al. 2004), 

that climate change will affect the spread of infectious diseases and challenge local responses 

(Alitzer et al. 2013; Ostfeld 2009), and that agricultural deficits will increase with increasing 

climate pressures (Ewert 2012; Smit et al. 1999). Moreover, paleoanthropologists demonstrate 

that climate adaptation may account for some of the observed evolution of hominin species 

(Potts 2012).  

A recent study estimated a 9-10% net crop yield reduction due to the excess temperature 

and drought at the global level (Lesk et al. 2016) and the Intergovernmental Panel on Climate 

Change (IPCC) predicted that crop yield reductions will be increasingly severe in the coming 

decades (IPCC 2014). Although evidence points to systematic relationships between climate 

change and agricultural output, they generally fail to demonstrate the significance of sociological   

and political processes and take into account efforts to forestall the effects of the climate risk on 

agricultural outcomes. In this study, we fill the void by investigating the role of adaptation in 

models of agricultural outputs from a theoretical and empirical perspective. 
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 We build on established definitions of adaptation by IPCC (2001) and Adger et al. (2005) 

that “adjustment in natural or human systems in response to actual or expected climatic stimuli 

or their effects, which moderates harm or exploits beneficial opportunities” and adaptive 

capacity as tangible and intangible resource availabilities (e.g., Brooks et al. 2005; Cinner et al. 

2015; Eakin and Lemos 2006; Smit and Wandel 2006; Yohe and Tol 2002), to extend a recent 

study by Lesk et al. (2016) that examines the effects of climate on global crop yields. Our 

objectives include (1) integrating adaptation to climate change into conceptual models of 

agricultural outputs, (2) estimating the impact of adaptive capacity and extreme weather disasters 

on crop yields, and (3) demonstrating the substantive impact adaptive capacity, sensitivity, and 

extreme weather events in Sudan and Cambodia.  

 
2. Modeling adaptation to climate pressures in agricultural studies 

Lesk et al. (2016) provide the first national level evidence that climate driven extreme 

weather disasters by reported data on the International Disaster Database (EM-DAT) 

systematically reduce crop yields. Figure 1 represents a parameterization of the general trend in 

their results. The main driver of their result is drought and drought leads to increased water 

scarcity, which in turn reduces available inputs in agricultural sectors. In the absence of sustained 

rainfall communities must choose between lower yields or proactive steps to offset reductions 

imposed by climate pressures. Results from Lesk et al. (2016) and others (Garibaldi et al. 2010; 

Liang et al. 2017) point to a rather direct effect between climate pressures and agricultural 

productivity.  

However, most studies homogenize the impact of climate risk across diverse physical and 

social conditions and neglect the role of societal efforts to minimize the consequences of climate 

change. We argue that climatic pressures impact both physical and social systems and that much 
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of the homogeneity observed across physical systems is masking heterogeneity across social 

systems. In the process of adapting to climate pressures social systems have retroactive responses 

or proactive responses in an effort to moderate the impact. While retroactive responses serve to 

offset climate-imposed consequences, proactive responses are designed to minimize expected 

future consequences. 

Climate-driven extreme weather disasters such as drought in the U.S. West and floods in 

the U.S. Midwest and South, or the 2004 heat wave in Europe directly decrease crop yields. The 

mechanism can involve the reduction in inputs such as water, the destruction of planted crops, 

such as by a flood, or the inefficiency of different crop varieties under specific temperature 

ranges. The net result is lower yields per hectare for a given year(s) in which climate imposed 

harsh growing conditions. This type of model assumes no societal intervention. 

We argue that this direct effect model masks underlying social efforts to respond to 

climatic pressures on crop yields. Many scholars assume a certain level of adaptation is taking 

place, but omit explicit theoretical or empirical approaches. Indicators to measure adaptive 

capacity are widely developed but only marginally included in output modeling (Haddad 2005). 

Smit and Skinner (2002) suggest four main categories of agricultural adaptation such as farm 

production practices, farm financial management, technological developments, and government 

programs and insurance.  

Adaptation to climate change is a response to actual or anticipated impacts from climate 

pressures, and reflect social efforts to minimize risk to assets of value (Dow et al. 2013; Moser et 

al. 2010; Moser and Boykoff 2013). As a process to cope with the consequences of climate 

change (Lim and Spanger-Siegfried, 2005), adaptation that is associated with the ability of 

communities to provide agricultural inputs under most conditions would be an asset of value at a 
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local and national level. Local or individual level adaptation – at the level of the farmer – may 

offset risk to the family, leaving the broader risk to the community or country unacceptably high. 

The greater the reach of adaptive capacity, the greater the requirements on capacity to facilitate 

and implement adaptive strategies. At the extreme, national level adaptive capacity flows 

through to local communities such that the broader risk is minimized through adroit national 

planning. One economic rationale for adaptive capacity at national level could be the expected 

reduction in the need for food or agricultural-input imports. 

These adaptation strategies involve the interaction of micro and macro level initiatives. 

The centrality of adaptation is evident in the concept of water scarcity as a driver of agricultural 

output. Water scarcity is a function of the hydrological cycle and, ceteris paribus, sustained 

drought will lead to severe water scarcity. But water scarcity can be minimized by irrigation. If 

drought is measured by the Palmer Drought Severity Index (PDSI) or soil moisture content 

(ESA), both can be manipulated by adding water via ground water irrigation systems or 

developing water retention programs (Elliott et al. 2013). Each is a form of adaptation to climate 

change, and implementation is often a function of national level capacity.  

Current studies from agronomy, climatology, and environmental science suggest that 

adaptation policies can not only mitigate the effects of climate change on crop yields but also 

they can transform what would be anticipated declines in yields into increases. For example, 

Wang et al. (2012) found that by utilizing a “double-delay” method of farming —a planned 

adaptation strategy—which staggers both the harvesting and planting of winter wheat and maize 

over a growing year, Chinese farmers not only compensated for some of the negative impacts of 

climate change, but realized significant crop yield increases as a result of this adaptation strategy 
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(Jorgensen and Termansen 2016). From this perspective models of the climatic impact on crop 

yields should account for the potential positive as well as negative impacts by climate change.  

As depicted in Figure 2, we articulate a conceptual model of the effect of extreme 

weather disasters on crop yields mediated through the lens of adaptive capacity. Within the 

model, vulnerability to climate change refers to the potential for losses given exposure to 

climate-driven stressors, sensitivity is the level of risk under conditions of exposure and adaptive 

capacity reflects the social and structural conditions available to protect the level of risk. We 

hypothesize that under conditions of climate generated extreme weather disasters, greater levels 

of agricultural adaptive capacity will reduce expected declines in crop yield as a result of 

extreme weather disasters alone.  

National level support for and local level implementation of adaptation strategies are 

functions of the sensitivity to climate change. These are related to a combination of geophysical 

conditions and social endowments. Social endowments can be distributed from the national to 

the local in accordance with the capabilities and incentives of the government. More specifically, 

if a country has high levels of sensitivity and large adaptive social endowments, social resources 

could be distributed in a way that minimizes the impact of climate stressors on agricultural 

output. On the other hands, if social endowments are lower than the sensitivity to climate 

stressors, the limited resources will have only a marginal effect on preventing crop yield 

reductions. Adaptive capacity in general will not reverse the deleterious consequences of 

extreme weather disasters but rather moderate those down-side consequences. From a broadly 

cross national perspective extreme weather disasters will suppress agricultural output but in 

environments where adaptation resources are more readily available, weather-related deficits 

should be minimized relative to a country with less adaptive capacity and similar sensitivity. 
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Based on the conceptual model of adaptive capacity and agricultural outputs, we estimate the 

role of adaptive capacity in mitigating climate risk on crop yields using country-level panel data. 

 
3. Methods and data 

As described in Table 1, we use selected variables as independent, dependent, or 

instrumented variables to secure appropriate empirical models.	
  We use annual data by country, 

with logged Cropyield, as a dependent variable. The crop yields are equivalent to total country 

level production divided by acres harvested, similar to the work by Schlenker and Roberts (2009) 

on the U.S. crop yields under climate change.  Our temporal range covers the period 1995-2010 

which corresponds to data availability. Extreme weather disasters data are reported disasters and 

include annual drought events (Singleyeardrought, Multiyeardrought), heat (Heat), cold (Cold), 

and flood events (Flood). These data are recoded dichotomously (1= yes, 0 = no) and were 

obtained from EM-DAT.  

We add indicators of the theoretical conditions of climate sensitivity and adaptive 

capacity, which jointly contribute to conditions of climate vulnerability (Sensitivity and 

Agricultural capacity). These data come from Notre Dame Global Adaptation Initiative (ND-

GAIN) (http:// index.gain.org) and cover the same 167 countries and span the years 1995-2015. 

Sensitivity captures the extent to which a country is dependent upon a sector or the proportion of 

the population that is negatively affected by climate-related disasters; adaptive capacity captures 

the availability of social resources for sector-specific adaptation. ND-GAIN records a sectorally 

constrained measure of agricultural adaptive capacity, which we use in our primary models. For 

our instrumental model we use the Readiness indicator from ND-GAIN which represents a 

country’s investment capability for adaptation actions and includes economic conditions, 
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governance support, and social capacities, and the Infrastructure variable to capture the capacity 

to mitigate negative effects of climate change on infrastructure. 

We use the primary data on extreme weather disasters and agricultural outputs from Lesk 

et al. (2016) to directly replicate and extend their analysis. We proceed systematically by first 

replicating within a parametric framework the results of Lesk et al. (2016). We follow this with a 

series of cross sectional time series models that address the effect of adaptive capacity on 

agricultural output over 15-year period (from 1995 to 2010). A Hausman test result (Chi-square 

(7) =55.52, p = 0.000) suggests that a fixed effect model is appropriate. Since the distribution of 

the dependent variable, Cropyield, was positively skewed (skewness 1.39), we logged our 

outcome variable. Our analysis, then, employs fixed effects panel models such as a linear model 

and an instrumental variable model. We replicate the Lesk et al. (2016) results using a linear 

OLS model. We test the robustness of results with an instrumental variable model with over 

identification tests of all instruments, instrumenting national level agricultural adaptive capacity. 

Our instruments include Sensitivity, Lagged Singleyeardrought, Lagged Multiyeardrought, 

Cropharvested area, Infrastructure, and Readiness for climate investment.                  

To test panel-level heteroscedasticity and autocorrelation, we use a Wald test for 

groupwise heteroscedasticity in fixed effect regression model and Wooldridge test for 

autocorrelation in panel data.  These tests demonstrate that there is no heteroscedasticity (Chi-

square (165) = 74,558.72, p = 0.000) or serial correlation (F (1, 164) = 1.313, p <0.253). To take 

into account robustness, we use Huber and White robust standard errors. Our test for the over 

identification for instrumented variables, Sargan statistic (Chi-square (5) = 48.59, p=0.000) 

suggests that our model is identified. Our primary explanatory variable of agricultural adaptive 
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capacity is comprised of 12 indicators from which ND-GAIN calculates Adaptive Capacity (AC) 

index as:  

𝐴𝐶!! =   
1
α!!

!!!
α! 𝑑! −   I!,!!

!

!!!

 
 Eq. (1) 

where	
  𝑟  is the index of the AC. AC has 12 indicators, thus  𝑟 = 1,2,3… ,12 , 𝑚 is the number of 

indicators, in this case 12, α!is the equally weighted indicator, 𝑑!is the direction adjustment for 

AC indicator 𝑟,   I!,!!  is the scaled score for indicator 𝑟 for nation N and year Y. Those 12 

indicators that can be obtained from ND-GAIN index include agriculture capacity, child 

malnutrition, dam capacity, access to reliable drinking water, medical staff, access to improved 

sanitation facilities, protected biome, engagement in international environmental conventions, 

quality of trade and transport infrastructure, paved roads, electricity access, and disaster 

preparedness.  

The differences in observations reflect the different time frames used by Lesk et al. 

(1960-2010) and the ND-GAIN index (1995-2015). Developing several fixed effects estimations 

with balanced panel models that accounts for the role of climate sensitivity and agricultural 

adaptive capacity generates the following specification:   

                     Eq. (2) 
 
 
 

where i denotes spatial units (countries in the study), t indicates time series dimensions (1995 to 

2010 in this study), αi is the unknown intercept for each study area i , and µit is the error term. 

Building on Eq. (2) and responding to the moderate effects of extreme weather events and 
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climate sensitivity and agricultural capacity, we add interaction effect variables like 

Heat×Agricultural capacity, Multiyeardrought×Agricultural capacity, Heat×Sensitivity, and 

Multiyeardrought×Sensitivity. Based on the panel data specification, we propose three different 

empirical equations. In all three equations agricultural adaptive capacity (Agricultural capacity 

variable) enters additively with respect to the extreme weather disasters.   

Next, in order to estimate “the presence of unobserved effects and endogeneity in one or 

more time-varying explanatory variables,” we employ an instrumental variables estimation with 

panel data (Wooldridge 2006, p.538). As noted before, we used several variables including 

sensitivity (Sensitivity), one year lagged multi and single year drought (Lagged Multiyeardrought 

and Lagged Singleyeardrought), crop harvested area (Cropharvested area), readiness for climate 

investment (Readiness), and the country’s infrastructure (Infrastructure )  as instrumental 

variables. Based on Eq. (2), a fixed effects-instrumental variable panel model can be given:    

   

Eq. (3) 

 

 

4. Results   

Table 2 presents empirical estimations of the role of adaptive capacity on agricultural 

output by comparing to the Lesk et al.’s (2016) approach to the relationships between extreme 

weather disasters and agricultural output. Our initial effort is to confirm the broad outlines of 

their results, albeit using a parametric form of estimation. By our modeling the results reported 

by Lesk and colleagues (2016) are confirmed. Extreme weather disasters associated with drought 
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generate decreased crop yields. Other forms of extreme weather disasters are associated with 

yield increases. We can attribute these differences to model specification. 

In subsequent models we add sophistication to the theoretical and empirical 

specifications by employing cross-sectional and temporal designs, and including national level 

indicators of climate sensitivity and agricultural adaptive capacity. These results support both the 

initial argument about climate disasters and the influence of country level capacity. In a panel 

model with both climate sensitivity and agricultural adaptive capacity the implication for country 

level capacity is quite strong (b= 0.305; robust se=0.103 Model 3 and b=0.302; robust se=0.103 

Model 4). In Models 2-4 the seemingly confounding signs associated with non-drought extreme 

weather disasters are now negative and the more sensitive a country to climate pressure the 

greater the reductions in crop yields (b=-2.729; robust se= 0.428 Model 3 and b=-2.719; robust 

se=0.432 Model 4). One could question whether a general level of adaptive capacity or an 

agricultural-specific measure provides the best theoretical traction on understanding the 

mediating effect on crop yields. Primarily we emphasize agricultural adaptive capacity because it 

portends to give greater purchase on the capability to offset agricultural loses, but we provide in 

an appendix comparing results using the broader measure of national adaptive capacity. These 

results confirm our findings using agricultural-specific measure. 

Given interaction effects of extreme weather events and climate sensitivity or adaptive 

capacity, there remain unexpected results (Model 4). Our empirical results stand up across 

various model specifications and indicators of adaptive capacity. Whether we use a general 

indicator of national adaptive capacity, an agricultural specific indicator, or indicators that 

capture specific forms of agricultural adaptive capacity, our results demonstrate that human 
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social adaptation can attenuate the debilitating consequences of climate driven extreme weather 

disasters on agricultural productivity. 

We extend our linear model in Table 2 to include an instrumental variable model. 

Reflecting on the statistically significant effect of crop yield (p=0.000), Model 5 captures the 

positive outcome of agricultural adaptive capacity and negative influence of sensitivity level on 

agricultural output in the context of climate change.  As with our empirical results, these more 

robust specifications confirm that extreme weather disasters tend to have deleterious effects on 

agricultural outputs, but that country level adaptive capacity can offset some of those effects. 

Table 3 presents the predicted crop yields based on the results of our empirical analysis. 

We draw these results from Model 4. The predicted yields demonstrate two critical aspects of a 

country’s climate vulnerability with regard to agricultural output. First, the degree of climate 

sensitivity has a large impact on crop yields in the face of multiyear droughts. Under drought 

conditions a highly sensitive country at the lower end of adaptive capacity suffers crop yields 

losses that are five times those of a less sensitive country with the same adaptive capacity 

(yields: 6,011 vs. 32,700). At the higher end of adaptive capacity those losses are still significant 

but amount to less than half of the predicted agricultural output (yields: 35,050 vs. 61,762). 

Second, adaptive capacity has a significant impact on expected output that is non-linear. 

Countries with low adaptive capacity and high sensitivity are estimated to lose 47% of their 

yields due to drought, whereas countries with higher capacity are estimated to lose only 13% as a 

result of multiyear droughts. Clearly the attributes of a country with regard to social and 

structural conditions that influence outcomes from climate stressors have a large impact. We 

present this predicted change in yields graphically in Figure 3. 
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To demonstrate the practical implications we use our model to estimate the outcome in 

specific countries (Table 4). Sudan is a resource constrained country that has suffered from 

drought conditions, desertification, and war. They also fall at the lower end of the adaptive 

capacity indicator and in the middle of our sensitivity measure. Under drought conditions in 

2001, the predicted loss in yields from a multi-year drought is roughly 90%. But if Sudan were to 

increase its adaptive capacity by a factor of three (still leaving it on the lower end of global 

averages), the expected loss from a drought would be less than 50%. Alternatively, Cambodia 

has a much wetter climate, low socio-economic development, and low levels of adaptive 

capacity; it suffered from a multiyear drought ending in 1996. The expected loss from that 

drought would amount to 32% crop yields relative to non-drought conditions. If they were to 

increase their adaptive capacity by a factor of two (0.11 to 0.22), yields would be expected to 

drop by only 11%.  

 
5. Conclusions and discussion 

Biophysical evidence supports the notion that climate change is causing reductions in 

agricultural outputs. This augurs poorly for a planet with a growing population, a changing 

climate, and great disparities in social endowments across countries. But the evidence to date 

does not adequately take into account the role of human social efforts to offset the damaging 

impacts from climate change. Evidence from China suggests that farmers are changing their 

methods of farming in response to declining yields (Wang et al. 2012), and individual case 

studies confirms this across a wider swath of political and social systems (Jorgensen and 

Termansen 2016; Wirehn et al. 2017). We present the broad evidence that national level adaptive 

capacity can offset the negative impacts of climate, at least as it pertains to agricultural output. In 

the study, we provide insights about the interface between national wealth, exposure to severe 
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climate, and adaptive agricultural capacity to the physical impacts of extreme weather events in 

the agriculture sector. Manipulating national level adaptive capacity is a social choice among 

possible tradeoffs as to where to spend limited resources. To the extent that the international 

community can support the development of adaptive capacity, our evidence suggests that climate 

induced human trauma can be minimized. In this sense our results have broad policy 

implications. 

 Analysis relies on the assumption that if the country has greater adaptive capacity this 

will ‘trickle down’ at higher amounts to a local level and in effect, farm-level capacity to offset 

climate pressure is mirrored in national level policy. While national level agricultural policy is 

almost by definition designed to influence local level strategies, systematic evidence at the local 

level would go a long way to helping to merge biophysical evidence about climate and its 

consequences to policy research that might help design ways to offset climate consequences. As 

farm-level adaptation strategies, numerous economic models (e.g., Forest and Agricultural Sector 

Optimization Model, Farm Aquaculture Resource Management Model) allow farms in different 

regions to select new crop rotation systems in response to climate conditions. In the new 

systems, farms adapt agricultural production systems to accommodate new climate conditions by 

changing in input mix and use like nutrient management, tillage, and irrigation. Ground water 

irrigation provides one form of proactive or reactive adaptation in response to expected or actual 

drought conditions. Estimates are that on the African continent only 6% of agriculture is irrigated 

through ground water sources (Liangzhi et al. 2010), leaving ample room for increased adaptive 

capacity to be developed. Policy, whether internationally supported or otherwise, can shape 

agricultural consequences from drought by increasing irrigation initiatives. These can be through 

broad regional projects or farmer level access to small irrigation pumps. Alternatively, national 
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level support for local level adaptation in the form of access to more responsive seed varieties 

could reduce the impact from drought on local crop yields. Either strategy would reflect an 

increased level of adaptive capacity. 

Appendices 

Primarily we emphasize agricultural adaptive capacity because it portends to give greater 

purchase on the capability to offset agricultural loses, but we provide comparative results using 

the broader measure of national adaptive capacity. Table A.1 reproduces the results presented in 

the main paper with a general indicator of national level adaptive capacity using the same model 

specifications. Results are supported. Moreover, in an effort to generate policy specific 

inferences about agricultural adaptive capacity, we extract a sectoral agricultural capacity index 

that reflects specific input capabilities. The composite agricultural capacity indicators are 

categorized into structural and non-structural capacity. Structural agricultural capacity 

(Structural agricultural capacity) includes the area equipped with irrigation and tractor usage, 

non-structural capacity (Nonstructural agricultural capacity) involves the extent of fertilizer use 

and pesticide use. Our empirical results stand up across various model specifications and 

indicators of adaptive capacity. Whether we use a general indicator of national adaptive capacity, 

an agricultural specific indicator, or indicators that capture specific forms of agricultural adaptive 

capacity, our results demonstrate that human social adaptation can attenuate the debilitating 

consequences to agricultural productivity from climate driven extreme weather disasters. 
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Table 1. Descriptive statistics 
Variable name  Obs Mean SD Min Max  

Singleyeardrought (index) 8,450 0.037 0.188 0 1 IV 
Heat (index) 8,450 0.015 0.123 0 1 IV 

Multiyeardrought (index) 8,450 0.064 0.245 0 1 IV 
Cold (index) 8,450 0.020 0.140 0 1 IV 
Flood (index) 8,450 0.238 0.426 0 1 IV 

Sensitivity (index) 2,704 0.430 0.146 0.125 0.811 IV/IS 
Agricultural capacity (index) 2,656 0.364 0.329 0 1 IV 
Cropharvested area (10,000m2) 7,536 4,083,373 1.25e+07 2 1.07e+08 IS 

Infrastructure (index) 2,704 0.347 0.141 0.058 0.808 IS 
Readiness (index) 2,672 0.409 0.167 0.090 0.883 IS 
Cropyield (0.1 kg/10,000m2) 7,536 21,536.96 15,417.92 542 97,108 DV 

Log Cropyield (logged Cropyield) 7,536 9.732 0.721 6.292 11.483 DV 
Note : units are in parentheses, IV : independent variable, IS : instruments variable, DV: dependent variable     
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Table 2. Crop yields as a function of climatic condition and vulnerability 
 Lesk et al. 

(2016)’s 
replication OLS 

 Panel design w/vulnerability measures 

cross-section, time series OLS, fe instrumental 

 Model 1  Model 2 Model 3 Model 4 Model 5 

Intercept 9.704*** 
(0.009) 

 11.148*** 
(0.177) 

11.010*** 
(0.188) 

11.007*** 
(0.189) 

8.782*** 
(0.303) 

Singleyeardrought -0.146*** 
(0.040) 

 -0.077** 
(0.030) 

-0.073** 
(0.030) 

-0.072** 
(0.030) 

-0.042 
(0.036) 

Heat 0.490*** 
(0.054) 

 -0.065** 
(0.020) 

-0.064** 
(0.020) 

-0.097 
(0.064) 

-0.067** 
(0.027) 

Multiyeardrought -0.585*** 
(0.029) 

 -0.074** 
(0.023) 

-0.070** 
(0.023) 

-0.073 
(0.101) 

-0.059** 
(0.028) 

Cold 0.399*** 
(0.041) 

 -0.023* 
(0.014) 

-0.019 
(0.013) 

-0.017 
(0.013) 

0.014 
(0.028) 

Flood 0.219*** 
(0.017) 

 0.025** 
(0.009) 

0.025** 
(0.009) 

0.024** 
(0.009) 

0.023* 
(0.011) 

Sensitivity   -2.775*** 
(0.413) 

-2.729*** 
(0.428) 

-2.719*** 
(0.432) 

 
 

Agricultural capacity    0.305** 
(0.103) 

0.302** 
(0.103) 

3.291*** 
(0.839) 

Heat× 
Agricultural capacity 

    0.117 
(0.089) 

 

Multiyeardrought× 
Agricultural capacity 

    -0.056 
(0.098) 

 

Heat×Sensitivity     -0.127 
(0.187) 

 

Multiyeardrought× 
Sensitivity 

    0.029 
(0.202) 

 

Number of 
observations / groups 

(nations) 
7,536  2,661/168 2,613 /165 2,613/165 2,581/163 

F 155.37***  16.88*** 12.99*** 9.97***  
R-squared 0.082      

Wald Chi-square      36.91*** 
Note: *: P<0.1, **: P<0.05, ***: P<0.001 (two-tailed test),  robust standard errors in  parentheses , dependent variable is log 
crop yield 

Table 3. Estimated crop yields by adaptive capacity, sensitivity, and drought 
                High sensitivity  Low sensitivity 

Adaptive 
capacity 

Multi- year 
drought 

No multi-year 
drought 

%Loss 
 yield 

 Multi- year 
drought 

No multi-year 
drought 

%Loss  
yield 

        
0.10 6,011 11,265 46.65  32,723 37,977 13.84 
0.20 9,237 14,491 36.26  35,950 41,203 12.75 
0.30 12,464 17,718 29.68  39,176 44,430 11.83 
0.40 15,691 20,944 25.09  42,403 47,657 11.03 
0.50 18,917 24,171 21.74  45,629 50,883 10.33 
0.60 22,144 27,398 19.18  48,856 54,110 9.71 
0.70 25,370 30,624 17.16  52,083 57,336 9.17 
0.80 28,597 33,851 15.53  55,309 60,563 8.68 
0.90 31,823 37,077 14.18  58,536 63,790 8.24 

1 35,050 40,304 13.04  61,762 67,016 7.84 
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Table 4. Comparisons of estimated crop yields between Sudan and Cambodia   
Adaptive 
capacity Sensitivity Multi- year 

drought 
No multi-year 

drought Δ yield Loss 
reduction 

  
Sudan  

0.03 0.55 511 5,765 -5,254  
0.10 0.55 2,770  -2,995 43% 

      
Cambodia  

0.11 0.34 11,263 16,517 -5,254  
0.22 0.34 14,813  -1,704 68% 
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Table A.1. Comparative estimates with and without adaptive capacity 
 Cross sectional models w/adaptive 

capacity  Instrumental 

 Model 1 Model 2 Model 3  Model 4 Model 5 Model 6 

Intercept 11.148*** 
(0.177) 

8.512*** 
(0.146) 

9.584*** 
(0.255) 

 7.403*** 
(0.347) 

8.301*** 
(0.521) 

9.115*** 
(0.259) 

Singleyeardrought -0.077** 
(0.030) 

-0.066** 
(0.030) 

-0.064** 
(0.030) 

 -0.053* 
(0.031) 

-0.082** 
(0.032) 

-0.043 
(0.035) 

Heat -0.065** 
(0.020) 

-0.070** 
(0.020) 

-0.065** 
(0.020) 

 -0.068** 
(0.021) 

-0.097** 
(0.029) 

-0.055** 
(0.025) 
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Multiyeardrought -0.074** 
(0.023) 

-0.069** 
(0.023) 

-0.057** 
(0.022) 

 -0.058** 
(0.022) 

-0.096*** 
(0.024) 

-0.056* 
(0.030) 

Cold -0.023* 
(0.014) 

-0.017 
(0.014) 

-0.016 
(0.013) 

 -0.009 
(0.015) 

-0.022 
(0.023) 

0.034 
(0.029) 

Flood 0.025** 
(0.009) 

0.014* 
(0.008) 

0.015* 
(0.008) 

 0.004 
(0.009) 

0.017 
(0.011) 

0.021 
(0.013) 

Sensitivity -2.775*** 
(0.413) 

 -1.958*** 
(0.410) 

    

Adaptive capacity  3.123*** 
(0.315) 

2.620*** 
(0.322) 

 5.497*** 
(0.742) 

  

Structural agricultural 
capacity 

     6.832** 
(2.135) 

 

Nonstructural agricultural 
capacity 

      3.380** 
(1.034) 

        
Number of observations / 

nations 2,661 /168  2,629/166 

F 16.88*** 22.41*** 21.27***     
Wald Chi-square     94.30*** 42.63*** 28.96** 

Note: *: P<0.1, **: P<0.05, ***: P<0.001 (two-tailed test),  robust standard errors in  parentheses , dependent variable is log crop yield 
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Figure 1. Estimated effect of drought on crop yields 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

26 
	
  

 

	
  

Figure 2. Model of agricultural adaptation to climate change 
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Figure 3. Predicted crop yields change by sensitivity, adaptive capacity under 
conditions of multiyear drought 
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